Quantcast
Viewing all articles
Browse latest Browse all 659

想要重版出來?數據告訴你怎麼做出暢銷書

「數據分析」結合「機器學習」,探勘書市商機

誰在買書?買什麼書?這是規劃出版與行銷計畫時,需考量的因素,過去僅能用專業經驗判斷,現在透過資料分析與機器學習,可以用客觀的科學輔佐主觀的決策。中央研究院資訊科學研究所陳昇瑋研究員,帶領資料洞察實驗室,找出書籍銷售數據中潛藏的商機。

資料科學:先搞懂如何發生,再讓它發生

Image may be NSFW.
Clik here to view.

資料分析的四個階段:描述、診斷、預測、指示。圖/Gartner 提供;張語辰改編

資料分析並非輸入數據、按下 Enter 鍵,就能得到立即性的結果,其工作至少可分為四個層次:

1. 描述:瞭解眼前發生了什麼,例如讀者是什麼樣貌
2. 診斷:用電腦來診斷眼前這件事為何發生,例如某些書籍的銷售為什麼特別好
3. 預測:未來會不會發生某件事,例如預測新書的銷售表現
4. 指示:如何促進某件事在未來發生,例如建置自動薦購系統或上架小工具,幫助提升新書銷售;或是幫書籍做更合適的命名以及封面設計

資料分析跟淘金一樣困難,若沒有以正確的方式使用合適的工具,什麼價值也淘不出來。

分析原始資料就像在砂礫中淘金,雖然不用冒著日曬雨淋的痛苦,但需長時間與電腦折騰,結合數學、統計、機器學習、資料探勘與資料視覺化的專業,整理資料的邏輯,找出隱藏在數據中的含意。若遇到非結構化的資料,在分析前尚需花額外的心力半自動或手動地將之轉換為結構化資料,才能使用分析技術來處理。但正因資料分析可以找出隱藏在數據中的洞察、輔助人類的思維,是一門值得投資心力的科學。

中研院陳昇瑋團隊與博客來合作,將 2014 年 12 月 至 2016 年 3 月間的匿名購書資料,結合政府資料開放平臺的數據,包含各個地區的綜合所得稅申報情況、教育程度、2016 年總統大選得票數等,探討購書行為和讀者生活型態的相關性,將不同購書客群之間的「差異性」數據化,藉以回答誰在買書、買什麼書、什麼書會暢銷……等問題,進而將資料科學的思維引入出版界,讓出版人不用再只是憑著經驗及感覺選書及做書。

什麼人在買什麼書?

Image may be NSFW.
Clik here to view.

博客來各類購書讀者:性別 x 年齡(資料區間為 2014 年 12 月 至 2016 年 3 月間)。圖/陳昇瑋提供

從博客來的匿名消費資料,顯示讀者基本樣貌與購書興趣為:男性較多購買自然科普、電腦資訊和商業理財的書籍,女性較多購買親子教養、飲食、童書和青少年文學。長輩較多購買童書、宗教命理和醫療保健的書籍,而年輕人較多購買輕小說、漫畫和語言學習的書籍。

一樣米養百樣人,一種書也能吸引百種讀者

在規劃出版與行銷策略時,有一個盲點常被忽略:

不能將同一個書籍類別的讀者,都視為同樣一個族群。

過往看銷售報表與會員資料時,經常會把讀者視為只有一種樣貌:例如財經讀者就是白領階級。但陳昇瑋與團隊定義「差異式讀者樣貌分析」,一層一層深入子類別探勘資料,證實同一個書籍類別亦存在「多重客群」。

以「小說」這個大類別為例,愛看「小說」的不會只是同一群人,例如都是戴著眼鏡的文青。同性愛小說和愛情小說的讀者主要是年輕人,而歷史武俠和文學研究的小說,讀者群以長輩為主。若進一步深入分析武俠小說中的「金庸」這個子類別,更存在兩種主要客群: 15 歲以下的青少年和 40 ~ 50 歲的中年人。

這反應出一個課題:出版與行銷規劃需更分眾、更精準,無論是溝通的宣傳語言、購買的行銷版位,皆需考慮多重客群的存在。

Image may be NSFW.
Clik here to view.

博客來讀者樣貌差異:文學小說類別(資料區間為 2014 年 12 月 至 2016 年 3 月間)。圖/陳昇瑋提供

從購書數據一窺社會現象

世間男女情愛糾葛,李組長眉頭一皺發現事情並不單純,這種社會議題不只在電視劇或新聞中出現,也顯現於購書行為中。

在商業理財的類別,存在許多教導如何成功的書,數據顯示 25 歲以前偏好購買「生涯規劃」類的成功經驗書籍,而 30 歲之後改買如何「致富」的成功指導書籍,顯示 30 歲大關是人生覺悟的交叉點,與其花時間規劃生涯卻前途迷茫,快速致富還比較實際,但也可能因為 30 歲之後除了養自己也要養家人,肩膀壓力更重了。

另一方面,低收入族群偏向購買「投資理財」、「網路創業開店」的書籍,高收入族群則偏向購買「傳記」、「快樂學」的書籍,顯現 M 型社會下兩種不同人生方向與思維,有錢人需要學習如何快樂,而中產階級正朝著累積財富努力。

「外遇離婚」相關的書籍,會購買的族群大多年收入超過 70 萬,年收入越高,購買者越多,箇中含意不便多加著墨。

若將男性與女性消費者購買的書籍類別和數量,以書籍關鍵字作成文字雲,明顯看出男女想法大不同。在「心理勵志」這個書籍類別中,男性多關注「把妹、正妹、搭訕」,書中自有顏如玉是從古至今不變的智慧。而女性多關注「幸福、療癒、女人」,顯示現今女人越來越懂得要愛自己,是個樂見其成的社會風氣。

Image may be NSFW.
Clik here to view.

博客來讀者性別偏好的差異:心理勵志類為例(資料區間為 2014 年 12 月 至 2016 年 3 月間)。圖/陳昇瑋提供

Image may be NSFW.
Clik here to view.

博客來讀者性別偏好的差異:飲食類為例(資料區間為 2014 年 12 月 至 2016 年 3 月間) 。圖/陳昇瑋提供

無論是賣書或餐飲業,都值得注意年輕人與長輩的喜好差異。「甜點、雞尾酒、廚藝、咖啡」相關書籍熱銷,與近來市場上年輕族群的甜點學校、咖啡開店熱潮相輔相成。而長輩較喜歡「健康、養生、好吃」相關書籍,對於市場而言,開發同時符合健康及好吃需求的餐飲,是顯著的商機。

「養生」這個書名關鍵字,在「飲食類」受到長輩歡迎,但在「醫療保健類」在銷量上並沒有同樣得到大眾的青睞。

陳昇瑋與團隊以「書名關鍵字」,找出關鍵字與暢銷書之間的相關性。在醫療保健類發現,「養生」這個關鍵字不受到讀者歡迎,反而是「名醫、改善、療法、奇蹟」這類關鍵字能抓住讀者的眼球與荷包。也許這反應出一個醫療保健現況:在一秒鐘幾十萬上下的今日,人們不注重花費時間經營的健康之本──日常養生,而是在症狀出現時追求速效的醫療結果。

Image may be NSFW.
Clik here to view.

書名關鍵字與銷量的相關性:以博客來醫療保健類別為例(資料區間為 2014 年 12 月 至 2016 年 3 月間)。圖/陳昇瑋提供

Image may be NSFW.
Clik here to view.

書名關鍵字與銷量的相關性:以「輕鬆」為例(資料區間為 2014 年 12 月 至 2016 年 3 月間)。圖/陳昇瑋提供

「文字」在不同環境中,會發揮不同力量。同一個書籍關鍵字,在不同書籍類別中,會產生不同的銷售表現。例如,「輕鬆」這個字是行銷時常使用的關鍵字,彷彿在告訴消費者一旦買了這個產品,就能豪不費力地享受好處。對於「輕鬆投資、輕鬆存錢、輕鬆提升業績」這類輕鬆致富的願景,讀者們的想法是「反正我是信了」。但如果在不努力就沒有收穫的語言學習類別,就算告訴讀者「輕鬆說英語、輕鬆搞定文法、輕鬆學日文」,銷量顯示讀者們不會買單。

哪些書會暢銷?除了財神,也能問問電腦

以上內容尚處於資料分析的「描述」和「診斷」階段,真正有意義是分析的第三階段「預測分析」,藉由機器學習技術自動歸納出書籍銷量與各式書籍屬性的相關性,進而建立銷售表現的預測模型。

「機器學習」的作法為,讓程式自動學習哪些因子是重要的,預測某本書成為暢銷書的機率。

Image may be NSFW.
Clik here to view.

書籍銷售表現的預測模型。圖/陳昇瑋提供;張語辰設計

在「預測分析」這個工作階段中,陳昇瑋團隊運用「書籍屬性」、「書名關鍵字」及「上市前的市場狀況」來發展暢銷書預測的模型,以文學小說類別測試,其暢銷書的預測準確度可以接近八成。預測分析的最終目的為「指示型分析」,也就是資料分析的第四個工作階段,透過程式的指示提供最佳化建議,例如書名及副標怎麽下、書介如何編排、預覽圖片要放哪幾張、如何訂價及折扣……等等,協助拉近書籍與目標消費者的距離。

有時資料分析的結果很殘酷,會顯示過去在編輯與行銷上的直覺是不符合現實的,有時則能佐證某些觀察的可信度。資料科學及人工智慧技術,並非為了取代人類而生,最重要的觀念是:從經驗導向的世界換位思考,以客觀的資料事實及科學方法,輔助決策的進行,提高決策的正確機率。

現在,無論在出版業、零售業或電子商務領域的你,準備好用「資料科學」突破過往的認知了嗎?

延伸閱讀:

  • 執行編輯|林婷嫻 美術編輯|張語辰

Image may be NSFW.
Clik here to view.

本著作由研之有物製作,以創用CC 姓名標示–非商業性–禁止改作 4.0 國際 授權條款釋出。

The post 想要重版出來?數據告訴你怎麼做出暢銷書 appeared first on PanSci 泛科學.


Viewing all articles
Browse latest Browse all 659

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>